ADIC924 Vo

性能特点

• 工作频率: 14 - 18 GHz

发射路增益: 25 dB @ 16 GHz接收路增益: 22 dB @ 16 GHzRX噪声特性: 3 dB @ 16 GHz

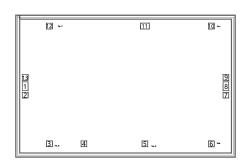
• TX Psat输出功率: 28 dBm

• RX P1dB压缩点输出功率: 7 dBm

TX 直流供电: VdT=8V, IdT=120 mARX 直流供电: VdR=2V, IdR=22 mA

• 芯片尺寸: 3.66 mm×2.34 mm×0.08 mm

产品简介


ADIC924是一款高集成度的前端模块 (FEM),内部集成有两个分别控制发射和接收路通断的单刀双掷开关,一个低噪声放大器和一个功率放大器,可广泛应用于UWB定位和通信系统。

发射和接收的模式转换通过两个控制电压实现,该芯片可适用于TDD系统。为确保芯片有更低的功耗,发射模式下低噪声放大器处于关闭状态,而在接收模式下功率放大器处于关闭状态。

推荐工作条件

TX漏极电压 VdT	+8 V	
RX漏极电压 VdR	+2 V	
TX栅极电压 VgT	-0.9 V	
RX栅极电压 VgR	-0.9 V	
Vc1/Vc2	0 V/-5 V	
控制电压馈电端		

外形尺寸

注: 1) 所有标注尺寸单位为微米(µm); 2) 外形长宽尺寸公差: ±50 µm;

3) 芯片厚度80 µm。

键合压点

编号	符号	功能描述	尺寸(µm²)	
1	RF1	射频信号端口,外接50	150×150	
8	RF2	欧姆系统,无需隔直电容	130**130	
3	VdR	RX漏极电压馈电端,需	100×100	
		外置100 pF芯片电容		
11	VdT	TX漏极电压馈电端,需	150×100	
		外置100 pF芯片电容	130 ^ 100	
5	VgR	RX栅极电压馈电端,需	100×100	
,		外置100 pF芯片电容	100×100	
12	VgT	TX栅极电压馈电端,需	100×100	
12	vgi	外置100 pF芯片电容	100 × 100	
10	Vc1	控制电压馈电端	100×100	
6	Vc2	控制电压馈电端	100×100	
2, 4,				
7, 9,	GND	接地端	100×100	
13				

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

关注公众号

更新日期: 2023-10-25

ADIC924 VO

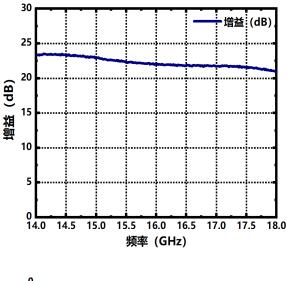
极限参数

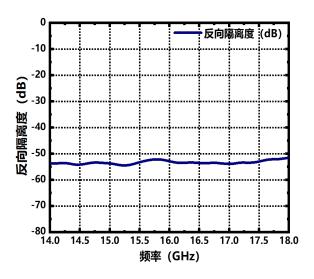
名称	值
TX漏极电压 VdT	+8 V
RX漏极电压 VdR	+2 V
TX栅极电压 VgT	-0.9 V
RX栅极电压 VgR	-0.9 V
TX输入功率	15 dBm
RX输入功率	0 dBm
最大烧结温度	300 ℃
存储温度	-65 °C~150 °C
使用温度	-55 °C~125 °C

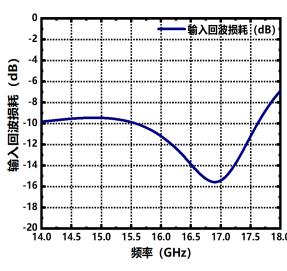
真值表

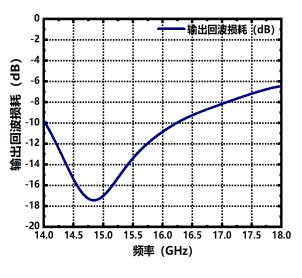
Vc1	Vc2	тх	RX
0 V	-5 V	关	开
-5 V	0 V	开	关

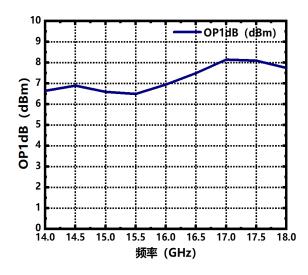
电性能表(VdT = 8 V , VdR = 2 V , Vc1/Vc2 = 0 V / -5 V , VgT/VgR = -2 V 逐渐增加到 -0.9 V)

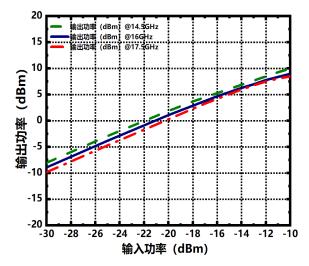

指标	最小值	典型值	最大值	单位	
发射模式电性能 (VdT = 8 V ,VdR = 2 V ,Vc1 = -5 V ,Vc2 = 0 V ,VgR = -2 V ,VgT= -2 V 逐渐增加到 -0.9 V)					
频率	14	1	18	GHz	
Tx 增益	19.8	25	25.5	dB	
Tx Psat输出功率	27.6	28	28.4	dBm	
Tx 输入回波损耗	-8	-11	-13	dB	
Tx 输出回波损耗	-7	-12	-15	dB	
TX 工作电流 IdT		120		mA	
接收模式电性能 (VdT = 8 V , VdI	R = 2 V , Vc1 = 0 V ,	Vc2 = -5 V , VgT = -	-2 V,VgR= -2 V 逐渐	增加到 -0.9 V)	
频率	14	1	18	GHz	
Rx 增益	21	22	23.5	dB	
Rx 噪声特性	2.8	3	3.4	dB	
Rx 1dB压缩点输出功率	6.5	7	8.2	dBm	
Rx 输入回波损耗	-8	-12	-16	dB	
Rx 输出回波损耗	-7	-12	-17	dB	
RX 工作电流 IdR		22		mA	

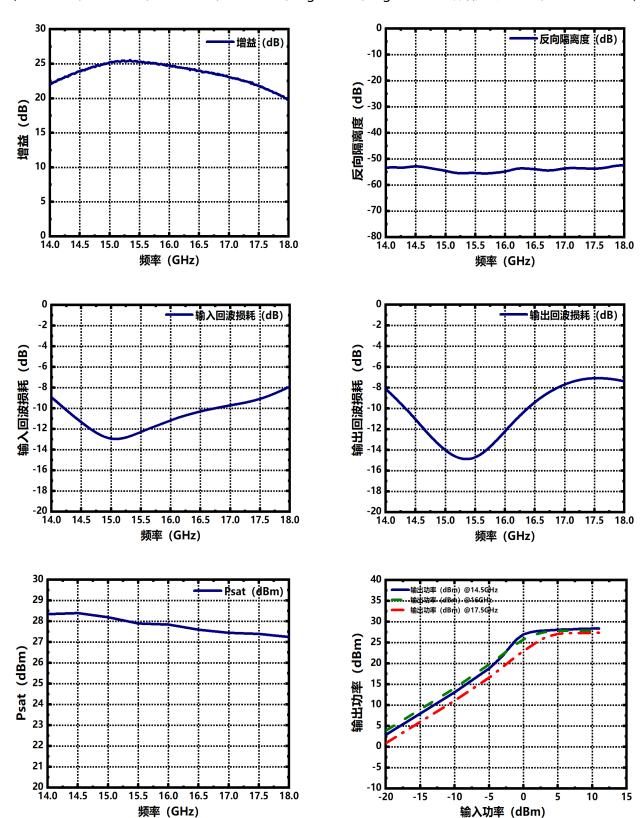



ADIC924 Vo


典型测试曲线 (T=25℃)


RX(Vc1=0 V, Vc2=-5 V, VdR=2 V, VdT=8 V, VgT=-2 V, VgR=-2 V逐渐增加到-0.9 V, IdR=22 mA)

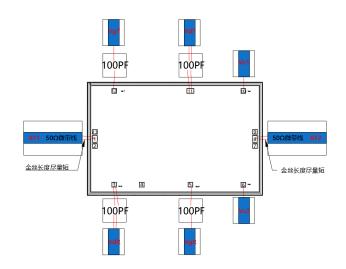




更新日期: 2023-10-25

ADIC924 Vo

典型测试曲线 (T=25℃)


TX(Vc1=-5 V, Vc2=0 V, VdR=2 V, VdT=8 V, VgR=-2 V, VgT=-2 V逐渐增加到-0.9 V, IdT=120 mA)

更新日期: 2023-10-25

ADIC924 Vo

建议装配图

注:

外围电容容值为100 pF, 推荐使用单层芯片电容, 并尽量靠近芯片键合压点。

注意事项

1.存储: 芯片必须放置于具有静电防护功能的容器中, 并在氮气环境下保存。

2.清洁处理:裸芯片必须在净化环境中操作使用,禁止采用液态清洁剂对芯片进行清洁处理。

3.静电防护:请严格遵守ESD防护要求,避免静电损伤。

4.常规操作:拿取芯片请使用真空夹头或精密尖头镊子。操作过程中要避免工具或手指触碰芯片表面。

5.加电顺序: 加电时, 先加栅压, 后加漏压; 去电时, 先去漏压, 后去栅压。

6.装架操作:芯片安装可采用AuSn焊料共晶烧结或导电胶粘接工艺,安装面必须清洁平整,芯片与输入输出射频连接线基板的缝隙尽量小。

7.烧结工艺: 用80/20 AuSn烧结,烧结温度不能超过300 ℃,烧结时间尽量短,不要超过20秒,摩擦时间不要超过3秒。

8.粘接工艺:导电胶粘接时点胶量尽量少,固化条件参考导电胶厂商提供的资料。

9.键合操作:无特殊说明,射频输入输出用2根键合丝(直径25 µm金丝),键合线尽量短。热超声键合温度150 ℃,采用尽可能小的超声能量。球形键合劈刀压力40~50 gf,楔形键合劈刀压力18~22 gf。10.有问题请与供货商联系。