

ADIC012 Vo

性能特点

• 频率范围: DC - 20 GHz

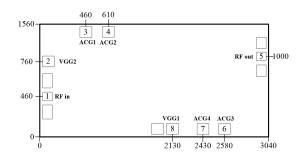
• 噪声系数: 2.0 dB @ 10 GHz

• 小信号增益: 16.5 dB @ 10 GHz

• P1dB: 22 dBm @ 10 GHz

直流供电: Vd= 8 V @ Id= 160 mA
(Vgg1= -0.35 V, Vgg2= 3.65 V)

• 芯片尺寸: 3.04 mm×1.56 mm×0.07 mm


产品简介

ADIC012是一款覆盖DC - 20 GHz的 功率放大器芯片,小信号增益典型值为 16.5 dB, P1dB典型值为22 dBm,饱和输出功率典型值为23 dBm,噪声系数在10 GHz处为2.0 dB。

极限参数

栅极负电压	-1 V		
漏极正电压	10 V		
输入功率	9 dBm		
存储温度	-65 °C~150 °C		
使用温度	-55 ℃~85 ℃		

外形尺寸

注: 1) 所有标注尺寸单位为微米(µm);

2) 外形长宽尺寸公差: ±50 µm;

3) 芯片厚度70 µm。

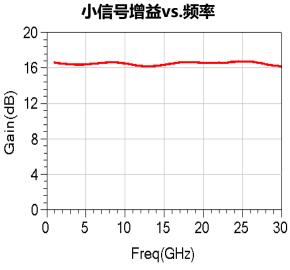
键合压点定义

_	Ī		T
编号	符号	功能描述	尺寸(µm²)
1	RFin	射频信号输入端,外接50欧 姆系统,需外接隔直电容	80×80
2	VGG2	栅极电压馈电端,需外接 100 pF和0.01 μF旁路电容	120×120
3	ACG1	需外接1000 pF旁路电容	120×120
4	ACG2	需外接0.47 μF旁路电容	120×120
5	RFout &VDD	射频信号输出端,外接50欧 姆系统,需外接BiasTee提 供漏电压	80×80
6	ACG3	需外接0.47 μF旁路电容	120×120
7	ACG4	需外接1000 pF旁路电容	120×120
8	VGG1	栅极电压馈电端,需外接 100 pF、0.01 μF旁路电容	120×120

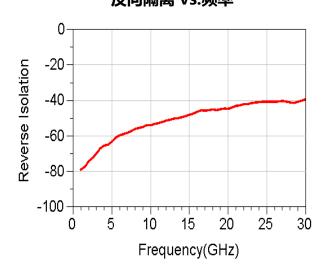
电性能表 (Vd= 8 V, Id= 160 mA, TA= +25 ℃)

参数名称	最小值	典型值	最大值	单位
频率范围	DC		20	GHz
小信号增益		16.5		dB
增益平坦度		±1		dB
饱和输出功率		23		dBm
P1dB		22		dBm
输入驻波		2		-
输出驻波		2		-
饱和电流		200		mA

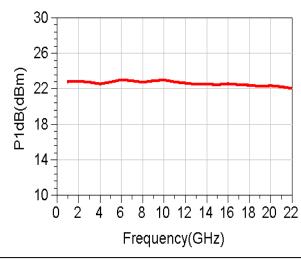
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

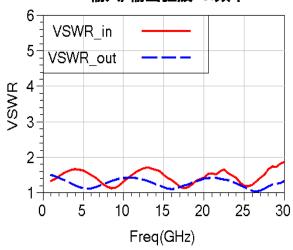


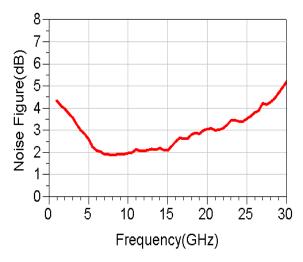
关注公众是

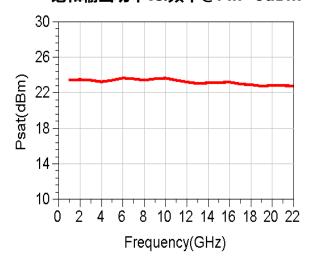

更新日期: 2023-12-01

ADIC012 Vo

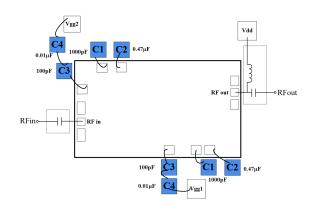

在片测试曲线 (T= +25 °C, Vd= 8 V, Id= 160 mA)


反向隔离 vs.频率


P1dB vs.频率


输入/输出驻波vs.频率

噪声系数vs.频率



饱和输出功率vs.频率@Pin=8dBm

ADIC012 Vo

建议装配图

注: 100 pF电容, 推荐使用单层电容, 并尽量靠近芯片键合压点。

注意事项

1.存储: 芯片必须放置于具有静电防护功能的容器中, 并在氮气环境下保存。

2.清洁处理:裸芯片必须在净化环境中操作使用,禁止采用液态清洁剂对芯片进行清洁处理。

3.静电防护:请严格遵守ESD防护要求,避免静电损伤。

4.常规操作:拿取芯片请使用真空夹头或精密尖头镊子。操作过程中要避免工具或手指触碰到芯片表面。

5.加电顺序: 加电时, 先加栅压, 后加漏压; 去电时, 先去漏压, 后去栅压。

6.装架操作:芯片安装可采用AuSn焊料共晶烧结或导电胶粘接工艺,安装面必须清洁平整,芯片与输入输出射频连接线基板的缝隙尽量小。

7.烧结工艺: 用80/20 AuSn烧结,烧结温度不能超过300 ℃,烧结时间尽量短,不要超过20秒,摩擦时间不要超过3秒。

8.粘接工艺:导电胶粘接时点胶量尽量少,固化条件参考导电胶厂商提供的资料。

9.键合操作:无特殊说明,射频输入输出用2根键合丝(直径25 µm金丝),键合线尽量短。热超声键合温度150 ℃,采用尽可能小的超声能量。球形键合劈刀压力40~50 gf,楔形键合劈刀压力18~22 gf。10.有问题请与供货商联系。

服务热线: 028-61399584

更新日期: 2023-12-01