ADIC013 Vo

# 性能特点

频率范围: 0.7 GHz - 6 GHz

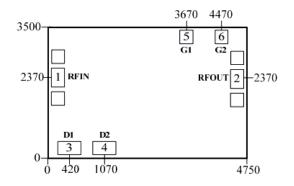
• 小信号增益: 27 dB

• 饱和输出功率: 43 dBm @ 25% PAE

• 直流供电: Vd= 36 V @ Id= 1.1 A

(Vq = -2.25 V)

• 芯片尺寸: 4.75 mm×3.50 mm×0.08 mm


# 产品简介

ADIC013是一款宽带功率放大器芯片, 频率范围覆盖0.7 GHz - 6 GHz, 小信号增益 典型值为27 dB, 饱和输出功率典型值为43 dBm。

# 极限参数

| 栅极负电压 | -5 V          |  |  |
|-------|---------------|--|--|
| 漏极正电压 | 40 V          |  |  |
| 输入功率  | 28 dBm        |  |  |
| 存储温度  | -65 °C~150 °C |  |  |
| 使用温度  | -55 ℃~85 ℃    |  |  |

# 外形尺寸



注: 1) 所有标注尺寸单位为微米(µm);

2) 外形长宽尺寸公差: ±50 µm;

3) 芯片厚度80 μm。

## 键合压点定义

| 编号        | 符号              | 功能描述            | 尺寸(µm²) |
|-----------|-----------------|-----------------|---------|
|           |                 | 射频信号输入端,外接      |         |
| 1         | RFin            | 50欧姆系统,无需隔      | 110×150 |
|           |                 | 直电容             |         |
|           |                 | 射频信号输出端,外接      |         |
| 2 RFout   |                 | 50欧姆系统,无需隔      | 110×150 |
|           |                 | 直电容             |         |
| 3、4 D1,D2 |                 | 漏极电压馈电端,需外      |         |
|           | 置1000 pF和1 uF旁路 | 300×120         |         |
|           |                 | 电容              |         |
|           |                 | 栅极电压馈电端,需外      |         |
| 5、6       | G1,G2           | 置100 pF、1000 pF | 110×110 |
|           |                 | 和0.01 uF旁路电容    |         |

**电性能表** (Vd= 36 V, Id= 1.1 A, TA= +25 ℃)

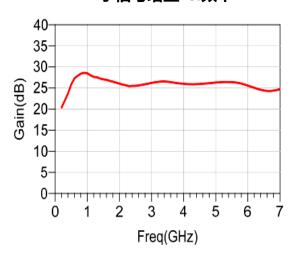
| 参数名称   | 最小值 | 典型值 | 最大值 | 单位  |
|--------|-----|-----|-----|-----|
| 频率范围   | 0.7 |     | 6   | GHz |
| 小信号增益  |     | 27  |     | dB  |
| 饱和输出功率 |     | 43  |     | dBm |
| 功率附加效率 |     | 25  |     | %   |
| 输入驻波   |     | 1.5 |     | 1   |
| 输出驻波   |     | 2.0 |     | 1   |
| 静态电流   |     | 1.1 |     | Α   |



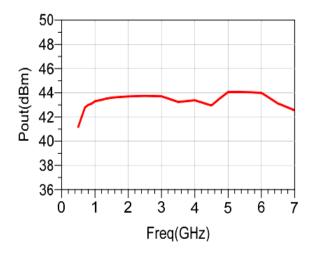
服务热线: 028-61399584

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

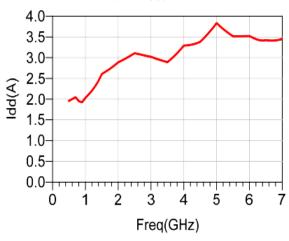



关注公众号

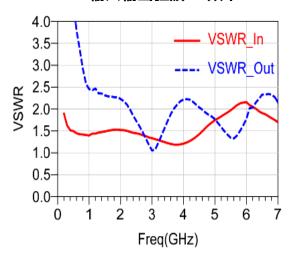
更新日期: 2023-12-01


ADIC013 V0

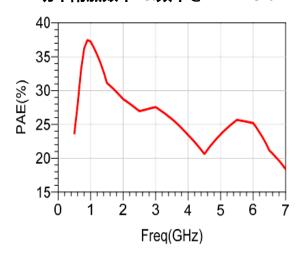
# **在片测试曲线** (T= +25 °C, Vd= 36 V, Id= 1.1 A)


#### 小信号增益vs.频率

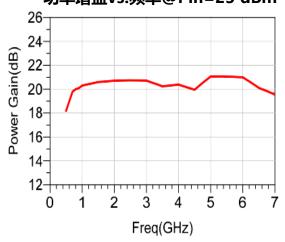



#### 输出功率vs.频率@Pin=23 dBm



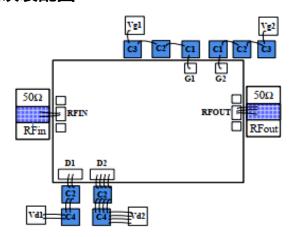

## 动态漏电流vs.频率@Pin=23 dBm




#### 输入输出驻波vs.频率



#### 功率附加效率vs.频率@Pin=23 dBm




## 功率增益vs.频率@Pin=23 dBm



ADIC013 Vo

#### 建议装配图



注: 外围电容C1容值为100 pF, C2容值为1000 pF, C3容值为0.01 μF, C4容值为1 μF。

## 注意事项

1.存储: 芯片必须放置于具有静电防护功能的容器中,并在氮气环境下保存。

2.清洁处理:裸芯片必须在净化环境中操作使用,禁止采用液态清洁剂对芯片进行清洁处理。

3.静电防护:请严格遵守ESD防护要求,避免静电损伤。

4.常规操作:拿取芯片请使用真空夹头或精密尖头镊子。操作过程中要避免工具或手指触碰到芯片表面。

5.加电顺序:加电时,先加栅压,后加漏压;去电时,先去漏压,后去栅压。

6.装架操作:芯片安装可采用AuSn焊料共晶烧结或导电胶粘接工艺,安装面必须清洁平整,芯片与输入输出射频连接线基板的缝隙尽量小。

7.烧结工艺: 用80/20 AuSn烧结,烧结温度不能超过300 ℃,烧结时间尽量短,不要超过20秒,摩擦时间不要超过3秒。

8.粘接工艺:导电胶粘接时点胶量尽量少,固化条件参考导电胶厂商提供的资料。

9.键合操作:无特殊说明,射频输入输出用2根键合丝(直径25 µm金丝),键合线尽量短。热超声键合温度150 ℃,采用尽可能小的超声能量。球形键合劈刀压力40~50 gf,楔形键合劈刀压力18~22 gf。10.有问题请与供货商联系。

3.