

ADIC016 V0

性能特点

• 频率范围: 18 GHz - 40 GHz

• 小信号增益: 22 dB

• 饱和输出功率: 38 dBm @ 17% PAE

• 直流供电: Vd= 18 V @ Id= 1200 mA

(Vq = -1.6 V)

• 芯片尺寸: 4.20 mm×2.44 mm×0.05 mm

产品简介

ADIC016是一款覆盖K、Ka波段的功率放大器芯片,频率范围覆盖18GHz - 40 GHz,小信号增益典型值为22 dB,饱和输出功率典型值为38 dBm,功率附加效率典型值为17%。

极限参数

栅极负电压	-5 V		
漏极正电压	20 V		
输入功率	30 dBm		
存储温度	-65 ℃~150 ℃		
使用温度	-55 ℃~85 ℃		

外形尺寸

注: 1) 所有标注尺寸单位为微米(µm);

2) 外形长宽尺寸公差: ±50 μm;

3) 芯片厚度50 µm。

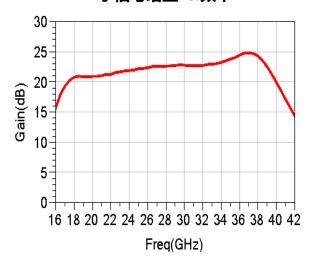
键合压点定义

编号	符号	功能描述	尺寸(µm²)	
		射频信号输入端,		
1	RFin	外接50欧姆系统,	80×80	
		无需隔直电容		
		射频信号输出端,		
2	RFout	外接50欧姆系统,	80×80	
	无需隔直电容			
3、4 Vg1、Vg2		栅极电压馈电端,	100×100	
	Va1 Va2	需外置100 pF、		
	10000 pF和10 uF	100×100		
	旁路电容			
		漏极电压馈电端,		
5、6	Vd1、Vd2	需外置100 pF、	150×150	
7、8	Vd3、Vd4	10000 pF和10 uF	130×130	
		旁路电容		

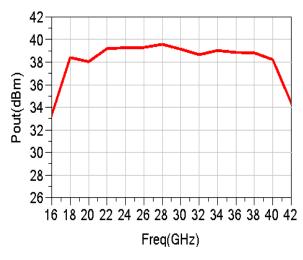
电性能表 (Vd= 18 V, Id= 1200 mA, TA= +25 ℃)

参数名称	最小值	典型值	最大值	单位
频率范围	18		40	GHz
小信号增益		22		dB
增益平坦度		±2.5		dB
饱和输出功率		38		dBm
功率附加效率		17		%
功率增益		14.5		dB
输入驻波		1.5		-
输出驻波		1.3		-
饱和电流		2600		mA

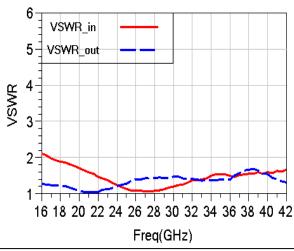
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

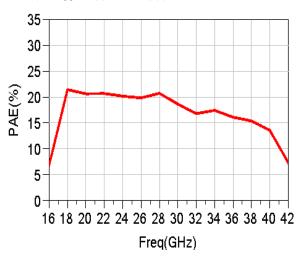

关注公众号

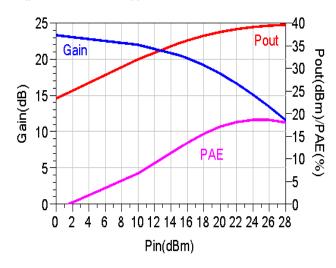
更新日期: 2023-12-01

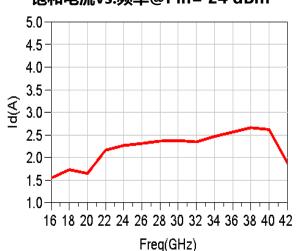

ADIC016 V0

在片脉冲测试曲线 (T= +25 °C, Vd= 18 V, Id= 1200 mA)


小信号增益vs.频率

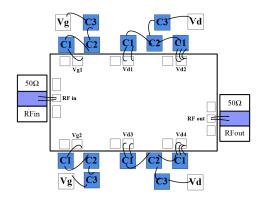

饱和输出功率vs.频率@Pin= 24 dBm


输入/输出驻波vs.频率


功率附加效率vs.频率@Pin= 24 dBm

输出功率、功率增益、效率vs.频率@30 GHz

饱和电流vs.频率@Pin= 24 dBm



服务热线: 028-61399584

ADIC016 V0

建议装配图

注:

外围电容C1容值为100 pF, C2容值为10000 pF, C3容值为10 μF, 其中C1推荐使用单层电容, 并尽量靠近芯片键合压点, C2和C3推荐使用贴片电容。

注意事项

1.存储: 芯片必须放置于具有静电防护功能的容器中, 并在氮气环境下保存。

2.清洁处理:裸芯片必须在净化环境中操作使用,禁止采用液态清洁剂对芯片进行清洁处理。

3.静电防护:请严格遵守ESD防护要求,避免静电损伤。

4.常规操作:拿取芯片请使用真空夹头或精密尖头镊子。操作过程中要避免工具或手指触碰到芯片表面。

5.加电顺序:加电时,先加栅压,后加漏压;去电时,先去漏压,后去栅压。

6.装架操作: 芯片安装可采用AuSn焊料共晶烧结或导电胶粘接工艺,安装面必须清洁平整,芯片与输入输出射频连接线基板的缝隙尽量小。

7.烧结工艺: 用80/20 AuSn烧结,烧结温度不能超过300 ℃,烧结时间尽量短,不要超过20秒,摩擦时间不要超过3秒。

8.粘接工艺:导电胶粘接时点胶量尽量少,固化条件参考导电胶厂商提供的资料。

9.键合操作:无特殊说明,射频输入输出用2根键合丝(直径25 µm金丝),键合线尽量短。热超声键合温度150 ℃,采用尽可能小的超声能量。球形键合劈刀压力40~50 gf,楔形键合劈刀压力18~22 gf。10.有问题请与供货商联系。

服务热线: 028-61399584

更新日期: 2023-12-01