ADIC950 Vo

性能特点

• 工作频率: 8 - 12 GHz

• 高增益: 54 dB @ 10 GHz

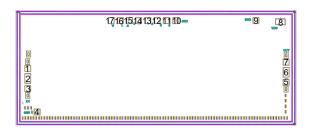
• OP1dB: 21 dBm @ 10 GHz

移相位数: 1 bit移相步进: 180°衰减位数: 6 bit衰减步进: 0.5 dB

• 供电电压: 5 V

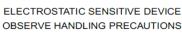
• 正电压控制

• 芯片尺寸: 4.5 mm × 1.8 mm × 0.1 mm


产品简介

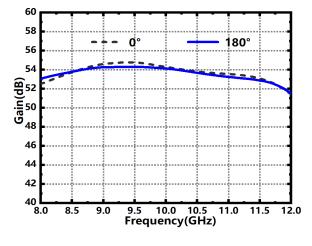
ADIC950是一款X波段宽带高增益幅相多功能芯片。集成放大器、1位180°数控移相器和6位数控衰减器,增益54dB @ 10 GHz, 1dB压缩点输出功率21 dBm @ 10 GHz, 工作电压5 V, 芯片尺寸4.5 mm × 1.8 mm × 0.1 mm。可应用于相控阵雷达和T/R组件等。

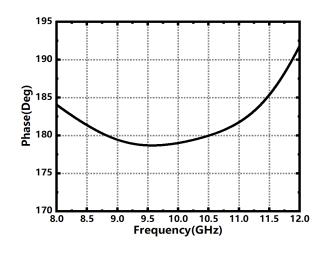
极限参数

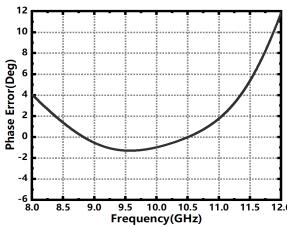

最大工作电流	300 mA		
最大工作电压	6 V		
最高输入功率	- 25 dBm		
工作环境温度	-45 °C∼+85 °C		
储存温度	-45 °C∼+150 °C		

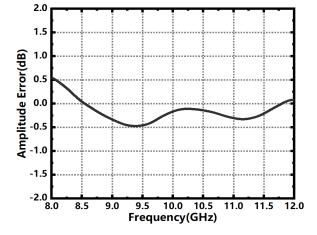
键合压点定义

压点编号	功能	尺寸 (µm)			
2	RFin-射频输入,片 上集成隔直电容	90 × 150			
6	RFout-射频输出, 片上集成隔直电容	90 × 150			
8	VDD-漏极电压5 V	90 × 150			
11~16	V6/V5/V4/V3/V2/ V1~16/8/4/2/1/0. 5dB幅度控制压点 (0/5 V)	90 × 90			
17	VC相位控制压点 (0/5 V)	90 × 90			
其它	GND	90 × 90			
尺寸	4.5 mm × 1.8 mm × 0.1 mm				
备注	1)输入/输出GSG中心间距均为 150 μm; 2) VC/V1/V2/V3/V4/ V5/V6 压点中心间距均为150 μ m.				

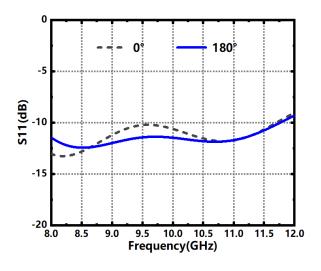

ADIC950 V0

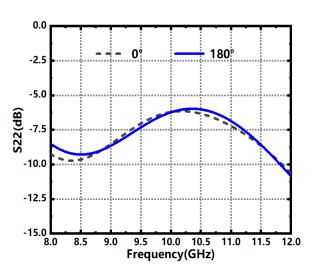

电性能表 (T=25℃, 50 Ω system)

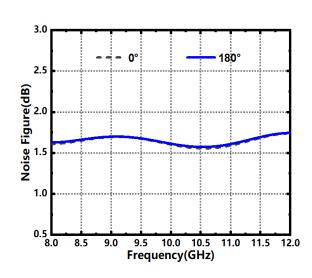

指标	最小值	典型值	最大值	单位	备注
频率范围	8	-	12	GHz	
		52		dB	8 GHz
增益	-	54	-	dB	10 GHz
		51		dB	12 GHz
输出P1dB	-	20		dBm	8 GHz
		21	-	dBm	10 GHz
		20		dBm	12 GHz
输入回波损耗	ı	-10	-	dB	
输出回波损耗	-	-8	-	dB	
工作电压		5.0	-	V	_
工作电流	-	210	-	mA	

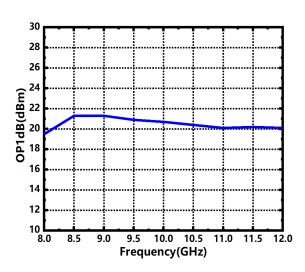

典型测试曲线 (T = 25℃, 50 Ω system)

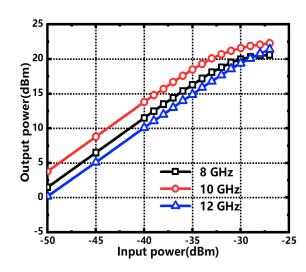
a) 相位控制 (VDD = 5 V/215 mA; VC= 0 V/5 V)

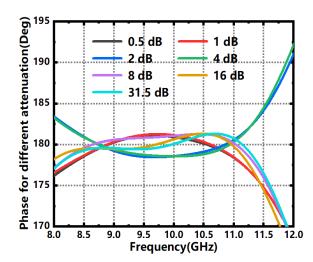


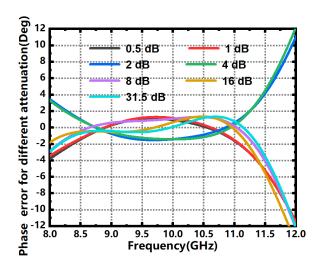


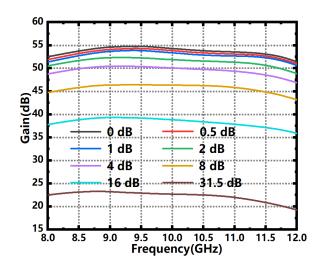


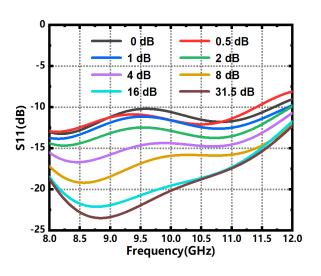


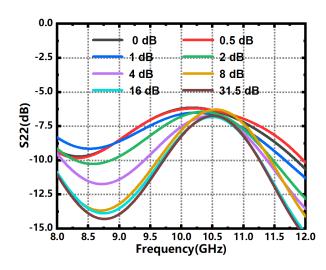

ADIC950 VO

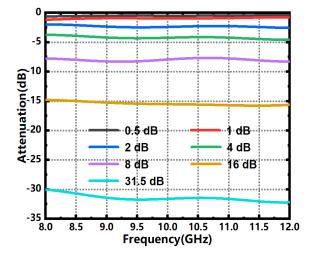




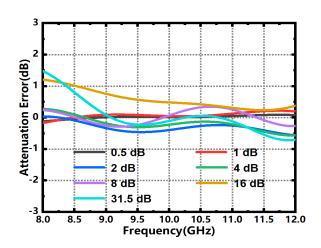


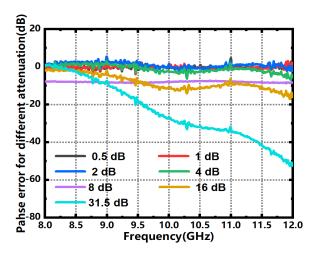


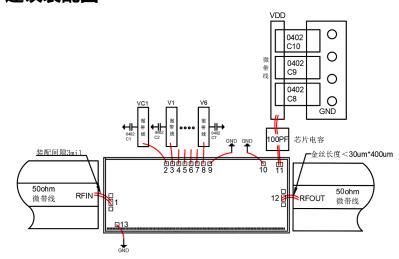

ADIC950 V0



b) 幅度控制 (VDD = 5 V/215 mA; VC= 0 V)



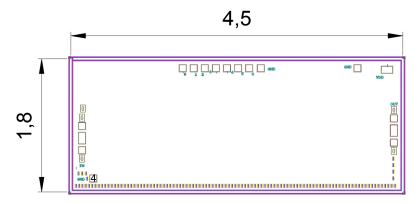



更新日期: 2023-12-01

ADIC950 V0

建议装配图

元件列表				
元件名称	元件 值 元件值			
C1-C7	0402/100 pF	±5%		
C8	0402/100 nF	±5%		
C9	0402/1 uF	±5%		
C10	0402/10 uF	±5%		


真值表

相位控制VC		幅度控制						
0 V	5 V	V1(V)	V2(V)	V3(V)	V4(V)	V5(V)	V6(V)	衰减量
	移相态 -	0	0	0	0	0	0	参考态
		5	0	0	0	0	0	0.5 dB
参考态 移		0	5	0	0	0	0	1 dB
		0	0	5	0	0	0	2 dB
		0	0	0	5	0	0	4 dB
		0	0	0	0	5	0	8 dB
		0	0	0	0	0	5	16 dB
		5	5	5	5	5	5	31.5 dB

ADIC950 Vo

外形尺寸

注: 1.所有标注尺寸单位为毫米(mm); 2.外形长宽尺寸公差: ±0.01 mm; 3.芯片厚度0.1 mm。

更新日期: 2023-12-01

注意事项

1.存储: 芯片必须放置于具有静电防护功能的容器中, 并在氮气环境下保存。

2.清洁处理:裸芯片必须在净化环境中操作使用,禁止采用液态清洁剂对芯片进行清洁处理。

3.静电防护:请严格遵守ESD防护要求,避免静电损伤。

4.常规操作:拿取芯片请使用真空夹头或精密尖头镊子。操作过程中要避免工具或手指触碰到芯片表面。

5.加电顺序: 加电时, 先加栅压, 后加漏压; 去电时, 先去漏压, 后去栅压。

6.装架操作:芯片安装可采用AuSn焊料共晶烧结或导电胶粘接工艺,安装面必须清洁平整,芯片与输入输出射频连接线基板的缝隙尽量小。

7.烧结工艺: 用80/20 AuSn烧结,烧结温度不能超过300 ℃,烧结时间尽量短,不要超过20秒,摩擦时间不要超过3秒。

8.粘接工艺:导电胶粘接时点胶量尽量少,固化条件参考导电胶厂商提供的资料。

9.键合操作:无特殊说明,射频输入输出用2根键合丝(直径25 µm金丝),键合线尽量短。热超声键合温度150°C,采用尽可能小的超声能量。球形键合劈刀压力40~50 gf,楔形键合劈刀压力18~22 gf。10.有问题请与供货商联系。

服务热线: 028-61399584