性能特点

• 工作频率: 2.4 - 4 GHz

• 插入损耗: 5.5 dB

• RMS phase error: 2.1°-3.6°

• RMS Amplitude Error: < 0.36 dB

• 1dB压缩点输入功率: 29 dBm

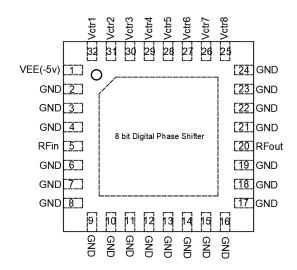
• 集成并行驱动: 8位控制位

正压控制: 0 V / 5 V

输入/输出阻抗: 50 Ω

• 32-pin 4 mm × 4 mm × 0.75 mm

QFN leadless package


产品简介

ADIC555LP4是一款GaAs MMIC 8位数控移相器。频率范围覆盖2.4 - 4 GHz,插入损耗典型值5 dB, RMS 2.1°- 3.6°,1 d B压缩点输入功率29 dBm。ADIC555LP4内部集成并行驱动,减少了控制电位的数目,并采用正压控制,方便用户使用。ADIC555LP4可广泛应用于RF/微波电路、测试测量和通信等。

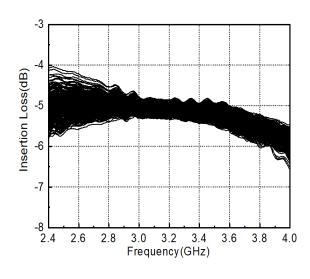
推荐工作条件

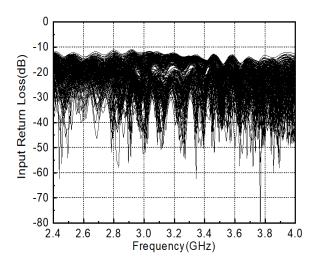
高电平控制电压	5 V
低电平控制电压	0 V
VEE	-5 V
使用温度	-55 ℃ ~ +85 ℃
储存温度	-65 °C ~ +150 °C

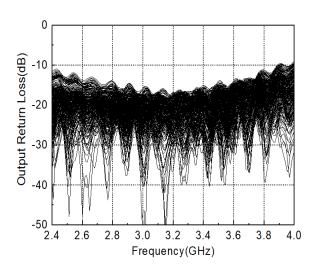
引脚定义

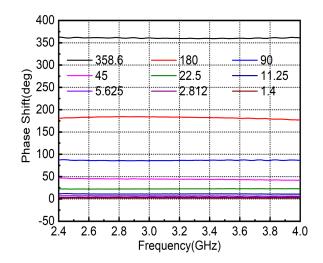
俯视透视图

引脚编号	符号	功能描述	
1	VEE	直流偏压-5 V	
5	RFin 射频信号输入端		
20	RFout	射频信号输出端	
25, 26, 27, 28, 29, 30, 31, 32	Vctr8~1	控制端口	
其它	GND	接地	

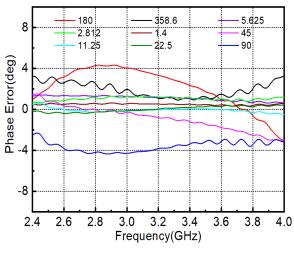


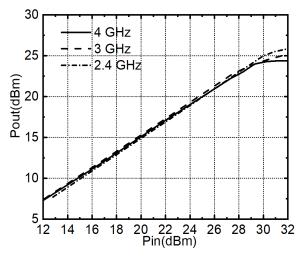

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

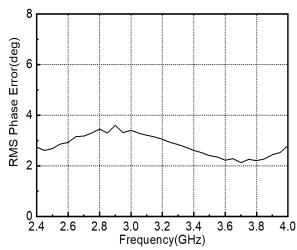

电性能表 (T=25 °C, 0 V / 5 V 控制, 50 Ω system)

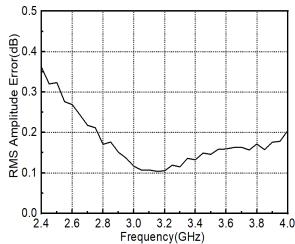

指标	最小值	典型值	最大值	单位
频率范围	2.4		4	GHz
插入损耗	4	5.5	6.6	dB
移相RMS	2.1	2.8	3.6	Deg
输入/输出回波损耗	-	10	-	dB
IP1dB	-	29	-	dBm

典型测试曲线

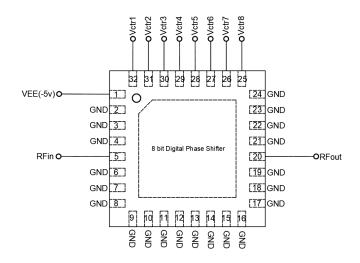


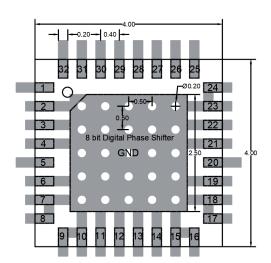




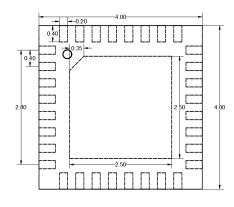

更新日期: 2023-12-01

服务热线: 028-61399584




真值表

Vctr1	Vctr2	Vctr3	Vctr4	Vctr5	Vctr6	Vctr7	Vctr8	相位状态
0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	参考态
5 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	1.4°
0 V	5 V	0 V	0 V	0 V	0 V	0 V	0 V	2.812°
0 V	0 V	5 V	0 V	0 V	0 V	0 V	0 V	5.625°
0 V	0 V	0 V	5 V	0 V	0 V	0 V	0 V	11.25°
0 V	0 V	0 V	0 V	5V	0 V	0 V	0 V	22.5°
0 V	0 V	0 V	0 V	0 V	5 V	0 V	0 V	45°
0 V	0 V	0 V	0 V	0 V	0 V	5 V	0 V	90°
0 V	0 V	0 V	0 V	0 V	0 V	0 V	5 V	180°
5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	358.6°
	相移计算公式: 相对相位=相移态-参考态							


应用电路

建议引脚PCB

外形尺寸

俯视透视图

侧视图

单位: mm

更新日期: 2023-12-01