性能特点

• 频率范围: 18 GHz - 40 GHz

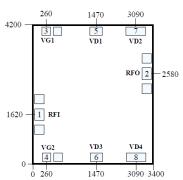
• 小信号增益: 21 dB

• 饱和输出功率: 40.5 dBm @ 15% PAE

• 直流供电: Vd= 18 V @ Id= 2.2 A

(Vg = -1.6 V)

• 芯片尺寸: 3.40 mm×4.20 mm×0.05 mm


产品简介

ADIC023是一款覆盖K和Ka波段功率放大器芯片,频率范围覆盖18GHz - 40 GHz,小信号增益典型值为21 dB,饱和输出功率典型值为40.5 dBm,功率附加效率典型值为15%,可在脉冲和连续波模式下工作。

极限参数

栅极负电压	-5 V		
漏极正电压	+19 V		
输入功率	+30 dBm		
存储温度	-65 °C~150 °C		
使用温度	-55 ℃~85 ℃		

外形尺寸

注: 1) 所有标注尺寸单位为微米(µm);

2) 外形长宽尺寸公差: ±50 µm;

3) 芯片厚度50 µm。

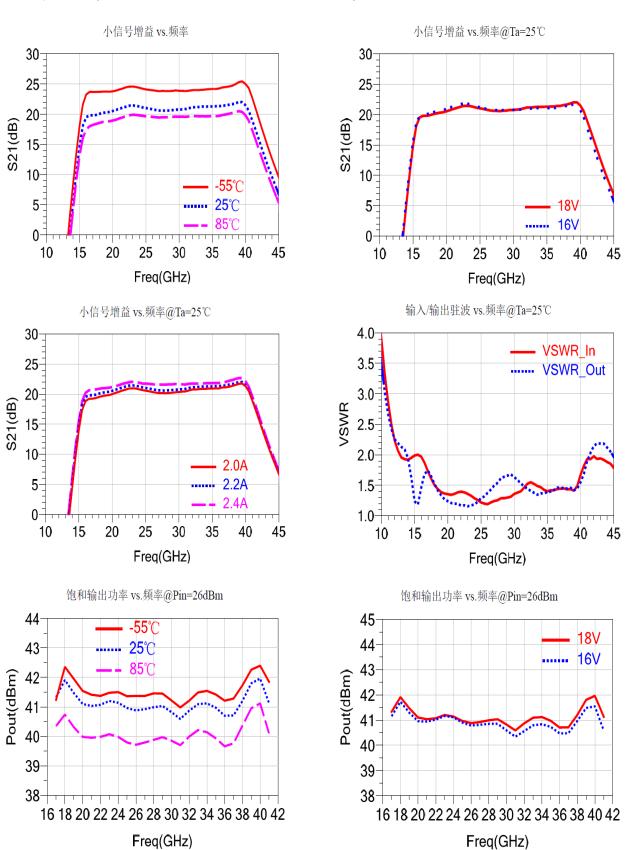
键合压点定义

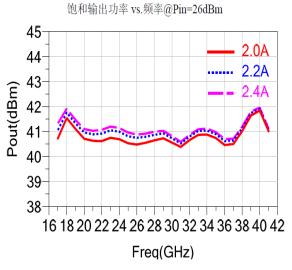
编号	符号	功能描述	尺寸(µm²)	
		射频信号输入,		
1, 2	RFin	输出端,外接50	90×100	
	RFout	欧姆系统,无需		
		隔直电容		
3, 4		栅极电压馈电		
	VG1	端,需外置100	100×100	
	VG2	pF、10000 pF和		
		10 uF旁路电容		
5, 6		漏极电压馈电		
	VD1	端,需外置100	150×100	
	VD3	pF、10000 pF和	130×100	
		10 uF旁路电容		
7, 8		漏极电压馈电		
	VD2	端,需外置100	200×100	
	VD4	pF、10000 pF和	200 ^ 100	
		10 uF旁路电容		

电性能表 (Vd= 18 V, Id= 2.2 A, TA= +25 ℃)

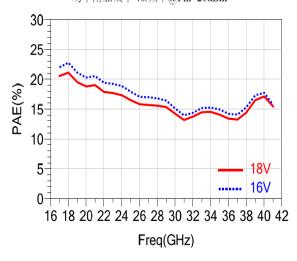
参数名称	最小值	典型值	最大值	单位
频率范围	18		40	GHz
小信号增益		21		dB
增益平坦度		±1		dB
饱和输出功率		40.5		dBm
功率附加效率		15		%
输入驻波		1.5		-
输出驻波		1.5		-
饱和电流			5.5	Α

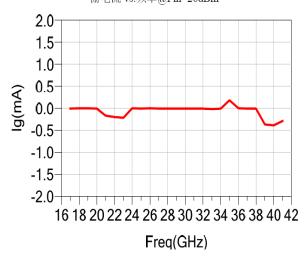
服务热线: 028-61399584

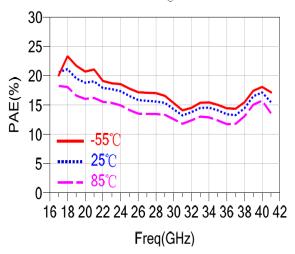

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

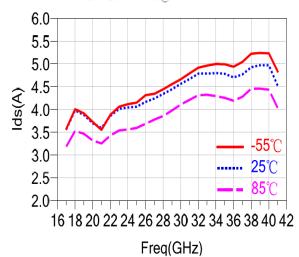

关注公众号

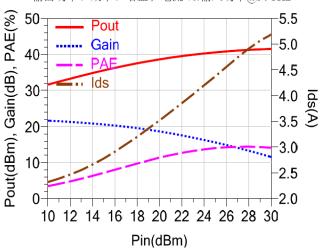
更新日期: 2024-01-08


在片测试曲线 (T= +25 °C, Vd= 18 V, Id= 2.2 A)

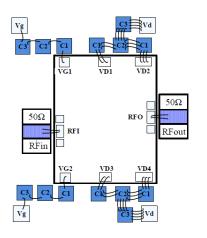

在片测试曲线 (T= +25 °C, Vd= 18 V, Id= 2.2 A)




栅电流 vs.频率@Pin=26dBm


功率附加效率 vs.频率@Pin=26dBm

饱和电流 vs.频率@Pin=26dBm



输出功率、效率、增益和电流 vs.输入功率@30GHz

建议装配图

注:

外围电容C1容值为100 pF, C2容值为10000 pF, C3容值为10 μF, 其中C1推荐使用单层电容, 并尽量靠近芯片键合压点。

注意事项

1.存储: 芯片必须放置于具有静电防护功能的容器中, 并在氮气环境下保存。

2.清洁处理:裸芯片必须在净化环境中操作使用,禁止采用液态清洁剂对芯片进行清洁处理。

3.静电防护:请严格遵守ESD防护要求,避免静电损伤。

4.常规操作:拿取芯片请使用真空夹头或精密尖头镊子。操作过程中避免工具或手指触碰到芯片表面。

5.加电顺序: 加电时,先加栅压,后加漏压; 去电时,先去漏压,后去栅压。

6.装架操作:芯片安装可采用AuSn焊料共晶烧结或导电胶粘接工艺,安装面必须清洁平整,芯片与输入输出射频连接线基板的缝隙尽量小。

7.烧结工艺: 用80/20 AuSn烧结,烧结温度不能超过300 ℃,烧结时间尽量短,不要超过20秒,摩擦时间不要超过3秒。

8.粘接工艺:导电胶粘接时点胶量尽量少,固化条件参考导电胶厂商提供的资料。

9.键合操作:无特殊说明,射频输入输出用2根键合丝(直径25 µm金丝),键合线尽量短。热超声键合温度150℃,采用尽可能小的超声能量。球形键合劈刀压力40~50 gf,楔形键合劈刀压力18~22 gf。10.有问题请与供货商联系。

服务热线: 028-61399584

更新日期: 2024-01-08

4