ADIC027 Vo

性能特点

• 工作频率: 0.05 - 8 GHz

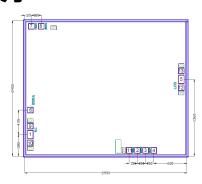
• 增益: 15 dB

• 1dB压缩点输出功率: 30 dBm

功率附加效率: 23%输入回波损耗: -16 dB输出回波损耗: -18 dB

静态电流: 320 mA@+12 V芯片尺寸: 2.95 × 2.4 × 0.1 mm

• 替代型号: HMC637A


产品简介

ADIC027是一款超宽带功率放大器芯片, 频率范围覆盖0.05 - 8 GHz, 功率增益15 dB, 1dB压缩点输出功率 30 dBm, 并有较 低的噪声系数, 可与国外产品进行Pin-To-Pin替换。可广泛应用于RF/微波电路、测试 测量、仪表仪器、雷达和电子对抗等。

极限参数

漏极电压Vdd	+16 V		
输入功率 (50 Ω 负载)	+25 dBm		
烧结温度 (30s, N)	300 ℃		
工作温度	-55 °C∼+125 °C		
储存温度	-65 °C∼+150 °C		
静电防护等级 (ESD)	Class 1B		
即电例扩 寸 级(E3D)	(HBM)		

外形尺寸

注: 1) 所有标注尺寸单位为微米(µm)

2) 芯片背面镀金接地

3) 外形长宽尺寸公差: ±50 μm4) RF压点尺寸: 150 ×100 μm5) DC压点尺寸: 100 ×100 μm

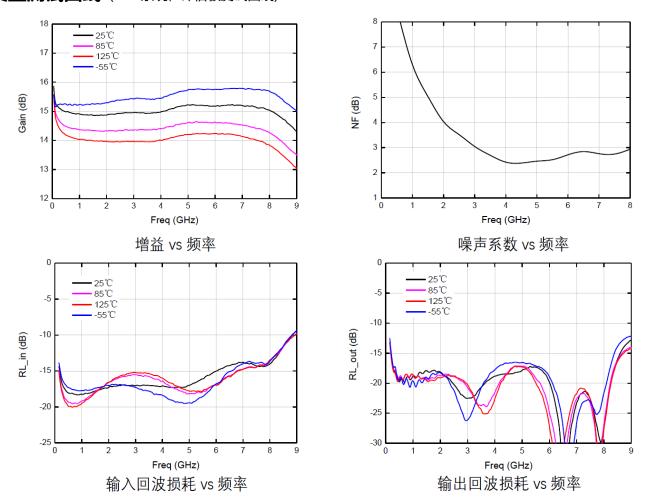
6) 芯片厚度: 100 µm

键合压点定义

服务热线: 028-61399584

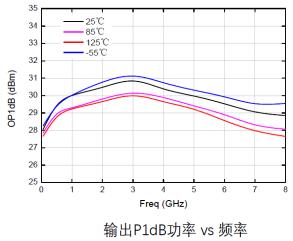
编号	符号	功能描述		
1	RFin	射频信号输入端,外		
		接50Ω系统,芯片内		
		部有隔直		
5	RFout/ VDD	射频信号输出端/漏极		
		馈电端,外接50Ω系		
		统,芯片内部有隔直		
2	VGG1	栅极电压馈电端1		
6	VGG2	栅极电压馈电端2		
7	ACG1	外接电容端1		
8	ACG2	外接电容端2		
4	ACG3	外接电容端3		
3	ACG4	外接电容端4		
其他	GND	接地焊盘		

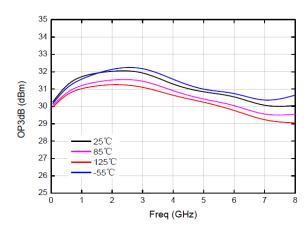
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

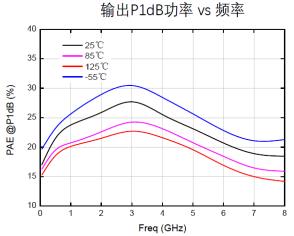

关注公众号

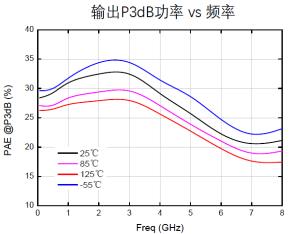
ADIC027 Vo

电性能表 (T = 25 ℃, Vdd = +12 V, Vgg2 = +6 V, Idq = 320 mA, Vgg1在-2 V到-0.5 V之间调节)

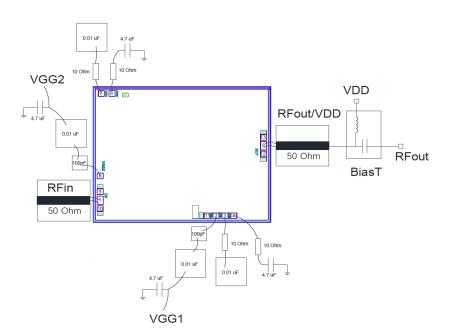

指标	最小值	典型值	最大值	单位
工作频率	0.05	-	8	GHz
增益	-	15	-	dB
增益波动	1	±0.5	1	dB
噪声系数@2~6 GHz	-	3	1	dB
输出1dB压缩功率	26	30	1	dBm
输出3dB压缩功率	27	31	-	dBm
P1dB功率附加效率	-	23%	-	-
P3dB功率附加效率	-	26%	-	-
输入回波损耗	-	-16	-12	dB
输出回波损耗	-	-18	-12	dB
静态电流	-	320	-	mA


典型测试曲线 (50Ω系统, 评估板测试曲线)




ADIC027 Vo

典型测试曲线 (50Ω系统, 评估板测试曲线)



P1dB功率附加效率 vs 频率

P3dB功率附加效率 vs 频率

应用电路

说明:

服务热线: 028-61399584

- 1、射频端口通过25um直径的金丝 双丝键合至微带,键合长度不超过 300um。
- 2、芯片输出端需外接biasT电路实现漏极供电,需采用宽带低损耗的biasT,通流能力不低于450mA。
- 3、若应用频段高于100MHz,则可省略3/4/7/8四个焊盘外的连接。
- 4、3/4端口外接电容可互换连接关系,7/8端口外接电容可互换连接关系。

更新日期: 2024-05-01