

ADIC028 V0

性能特点

• 频率范围: DC - 45 GHz

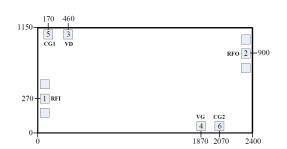
• 小信号增益: 16 dB

• 饱和输出功率: 24 dBm

• 直流供电: Vd=8V@ Id=0.16A

(Vg = -0.4 V)

• 芯片尺寸: 2.40 mm×1.15 mm×0.07 mm


产品简介

ADIC028是一款超宽带功率放大器芯片,频率范围覆盖DC - 45 GHz,小信号增益典型值为16 dB,饱和输出功率典型值为24 dBm,可在脉冲和连续波模式下工作。

极限参数

栅极负电压	-4 V		
漏极正电压	+8.5 V		
输入功率	+20 dBm		
存储温度	-65 °C~150 °C		
使用温度	-55 ℃~85 ℃		

外形尺寸

注: 1) 所有标注尺寸单位为微米(µm);

2) 外形长宽尺寸公差: ±50 µm;

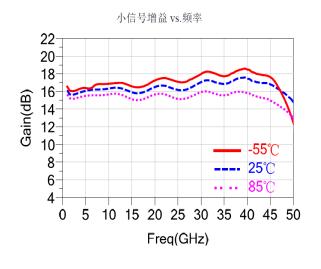
3) 芯片厚度70 μm。

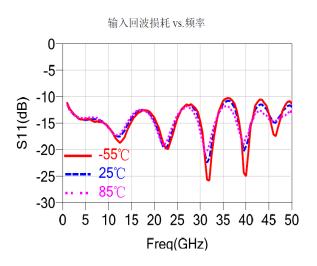
键合压点定义

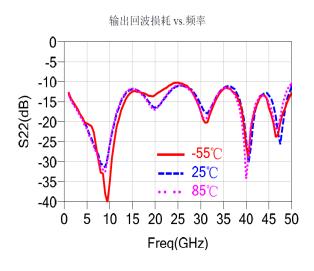
/ -	<i>kk</i> 🗆	TL 44441.15	5 5 6 7 1 1 1 1 1 1 1 1 1 1
编号	符号	功能描述	尺寸(µm²)
1	RFin	射频信号输入端,外接50欧 姆系统,需外置隔直电容	90×90
2	RFout	射频信号输出端,外接50欧 姆系统,需外置隔直电容	90×90
3	VD	漏极电压馈电端,需外置 1000 pF、和0.1 uF旁路电容	100×100
4	VG	栅极电压馈电端,需外置 1000 pF、和0.1 uF旁路电容	100×100
5	CG1	漏极低频扩展端口,需外置 0.1 uF旁路电容	100×100
6	CG2	栅极低频扩展端口,需外置 0.1 uF旁路电容	100×100

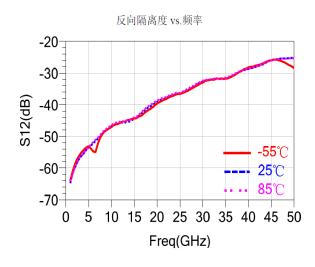
电性能表 (Vd= 8 V, Id= 0.16 A, TA= +25 ℃)

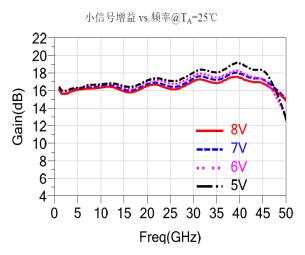
参数名称	最小值	典型值	最大值	单位
频率范围	DC		45	GHz
小信号增益		16		dB
增益平坦度		±0.5		dB
噪声系数		5		dB
P1dB		22		dBm
饱和输出功率		24		dBm
输入驻波		-12		dB
输出驻波		-12		dB
静态电流		0.16		Α

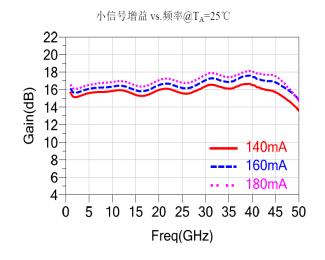

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

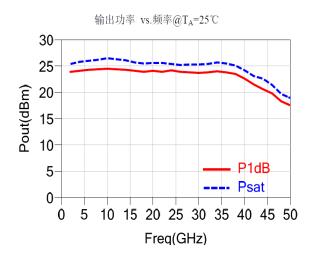


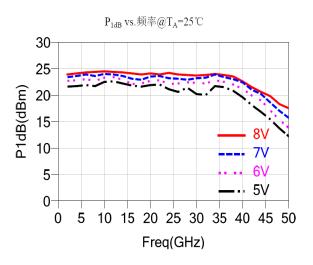

关注公众号

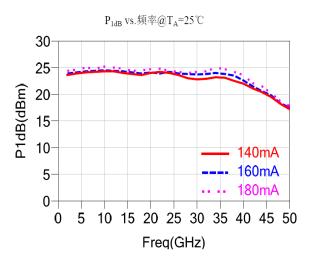

ADIC028 V0

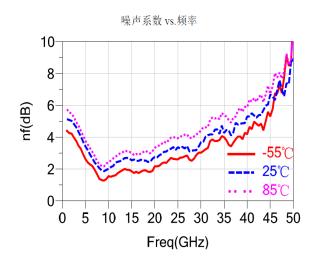

在片测试曲线 (T= +25 °C, Vd= 8 V, Id= 0.16 A)



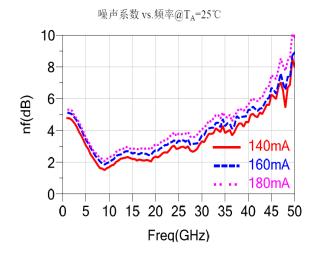


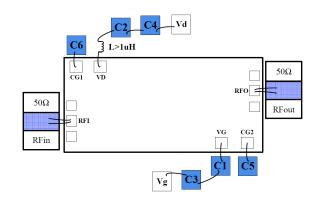



ADIC028 Vo


服务热线: 028-61399584

在片测试曲线 (T= +25 °C, Vd= 8 V, Id= 0.16 A)





更新日期: 2024-08-01

ADIC028 V0

建议装配图

注:

外围电容C1, C2容值为1000 pF, C3-C6容值为 0.1 μF, 其中C1, C2推荐使用单层电容, 并尽量 靠近芯片键合压点。

注意事项

1.存储: 芯片必须放置于具有静电防护功能的容器中, 并在氮气环境下保存。

2.清洁处理:裸芯片必须在净化环境中操作使用,禁止采用液态清洁剂对芯片进行清洁处理。

3.静电防护:请严格遵守ESD防护要求,避免静电损伤。

4.常规操作:拿取芯片请使用真空夹头或精密尖头镊子。操作过程中避免工具或手指触碰到芯片表面。

5.加电顺序: 加电时,先加栅压,后加漏压; 去电时,先去漏压,后去栅压。

6.装架操作:芯片安装可采用AuSn焊料共晶烧结或导电胶粘接工艺,安装面必须清洁平整,芯片与输入输出射频连接线基板的缝隙尽量小。

7.烧结工艺: 用80/20 AuSn烧结,烧结温度不能超过300 ℃,烧结时间尽量短,不要超过20秒,摩擦时间不要超过3秒。

8.粘接工艺:导电胶粘接时点胶量尽量少,固化条件参考导电胶厂商提供的资料。

9.键合操作:无特殊说明,射频输入输出用2根键合丝(直径25 µm金丝),键合线尽量短。热超声键合温度150℃,采用尽可能小的超声能量。球形键合劈刀压力40~50 gf,楔形键合劈刀压力18~22 gf。10.有问题请与供货商联系。

服务热线: 028-61399584

更新日期: 2024-08-01