性能特点

● 频率覆盖范围:125 MHz 至 4200 MHz

● 基波輸出: 2000 MHz 至 4200 MHz

● 可编程的分频输出: 1/2/4/8/16

• 整数和小数 N 分频频率合成器

• 具有低相位噪声的 VCO

• 典型抖动: < 0.4 ps rms

● 基波噪声: -76 至 -81 dBc/Hz @10 kHz;

-120 至 -127 dBc/Hz @1 MHz

● 电源: 3.0 V 至 3.6 V

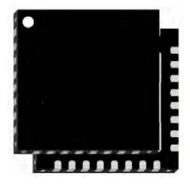
可编程双模预分频器: 4/5或8/9

• 三线式串行接口

• RF输出静音功能

• 可编程的输出功率

• 模拟和数字锁定检测


• 工作温度: -45 ℃ 至 85 ℃

产品简介

ADIC100LP5结合外部环路滤波器和外部 基准频率使用时,可实现小数N分频或整数N 分频锁相环(PLL)频率综合器。

ADIC100LP5具有一个集成压控振荡器 (VCO), 其基波输出频率范围为2000 MHz 至4200 MHz。此外,利用 1/2/4/8/16 分频电路,用户可以产生低至125 MHz的RF输出频率。对于要求隔离的应用,RF输出级可以实现静音。静音功能可以通过软件控制。同时提供辅助RF输出,且不用时可以关断。

所有片内寄存器均通过简单的三线式串行接口进行控制。该器件采用3.0 V-3.6 V电源供电,不用时可以关断。

32 Pin 5×5 mm QFN

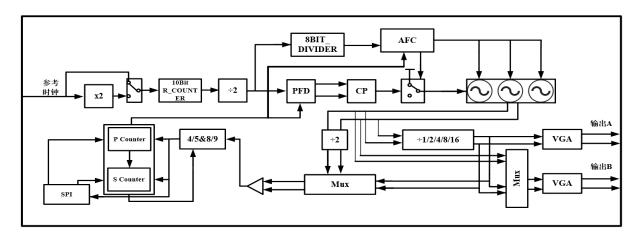
产品应用

- 无线基础设施(W-CDMA、TD-SCDMA、WiMAX、GSM、PCS、DCS、DECT)
- 测试设备
- 无线局域网 (LAN) 、有线电视设备
- 时钟产生

极限参数

存储温度	-55 ℃ ~ 150 ℃
使用温度	-45 °C ~ 85 °C

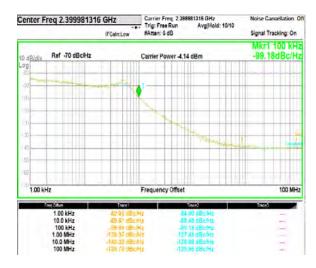
关注公众号

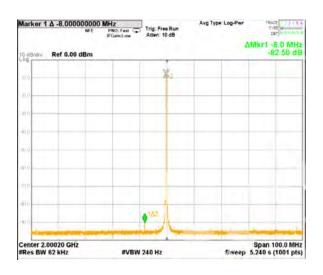

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

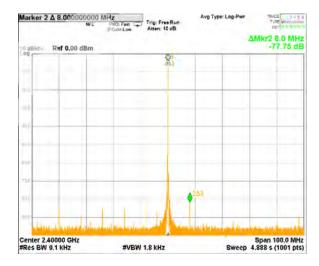
电性能表


参数	最小值	典型值	最大值	单位	条件/注释
REF _{IN} 特性 输入频率 输入灵敏度 输入电容 输入电流 鉴相器	10 2.5	10	100 AV _{DD} ±60	MHz V p-p pF µA	如果f< 10 MHz,确保压摆率大于 21V/μs AV _{DD} /2偏置 为保证低至2000 MHz频率输
鉴相器频率		4	80	MHz	出,推荐使用4 MHz鉴相。
电荷泵 I _{CP} 吸/源电流 高值 低值 吸电流与源电流匹配 I _{CP} 与V _{CP} I _{CP} 与温度		5 0.312 1 1.5 2		mA mA % %	0.5 V ≤ VCP≤ 2.5 V 0.5 V ≤ VCP≤ 2.5 V V _{CP} = 2.0 V
逻辑输入 输入高电压V _{INH} 输入低电压V _{INL} 输入电流I _{INH} /I _{INL} 输入电容C _{IN}	1.5	3.0	0.6 ±1	V V µA pF	
逻辑输出 输出高电压VoH 输出高电流IoH 输出低电压VoL	DVDD -	0.4	500 0.4	V mA V	选择CMOS输出 I _{OL} = 500 µA
电源 AV _{DD} DV _{DD} , V _{VCO} , SD _{VDD} , V _P	3.0	3.3 AV _{DD}	3.6	V	这些电压必须等于A _{VDD}
DI _{DD} + AI _{DD} 输出分频器 I _{VCO}		21 6 to 24 65	27 75	mA mA mA	每个二分频输出消耗6 mA RF输出级可编程
IRFOUT RF输出特性 最大VCO输出频率 最小VCO输出频率 使用分频器时最小VCO输出频率 VCO灵敏度 最小VCO调谐电压 最大VCO调谐电压	2000 125	33 0.5 2.5	4200	MHz MHz MHz MHz/V V	2000 MHz基波输出,选择16分 频
噪声特性 PLL相位噪声性能 PFD频率引起的杂散信号 使能RF静音时的信号电平		-88 -108 -131.49 -89 -90 -127 -70 -40		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc dBc	10 KHz偏移、2000MHz载波 100 KHz偏移、2000MHz载波 1 MHz偏移、2000MHz载波 10 KHz偏移、2400MHz载波 100 KHz偏移、2400MHz载波 1 MHz偏移、2400MHz载波

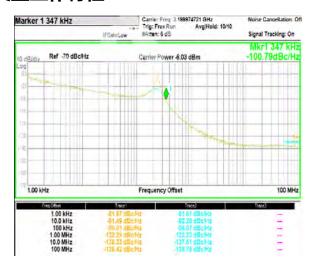
服务热线: 028-61399584


简化原理框图

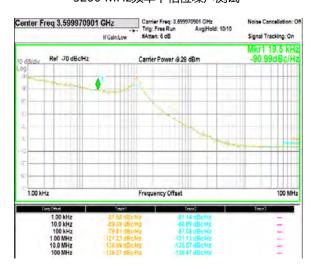

典型工作特性


2000 MHz频率下相位噪声测试

2400 MHz频率下相位噪声测试

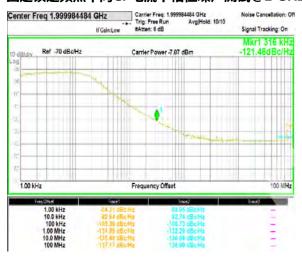


8 MHz鉴相频率下参考杂散 (整数分频) 2000 MHz

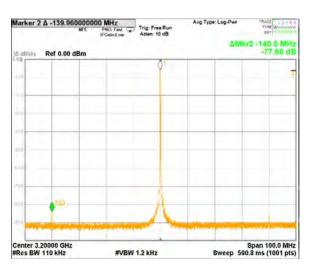


8 MHz鉴相频率下参考杂散 (整数分频) 2400 MHz

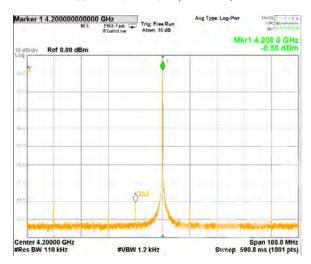
典型工作特性



3200 MHz频率下相位噪声测试


3600 MHz频率下相位噪声测试

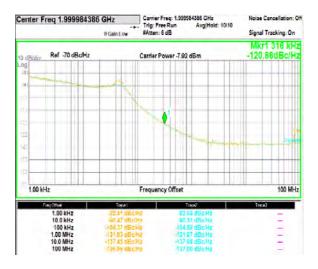
固定锁定频点不同CP电流下相位噪声测试@2 GHz

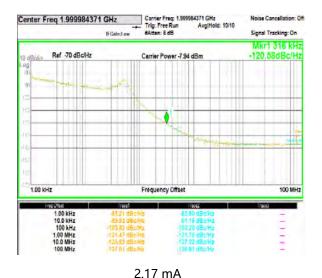


0.31 mA 0.62 mA

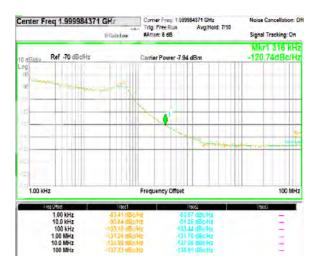
服务热线: 028-61399584

70 MHz鉴相频率下参考杂散 (整数分频) 3200 MHz

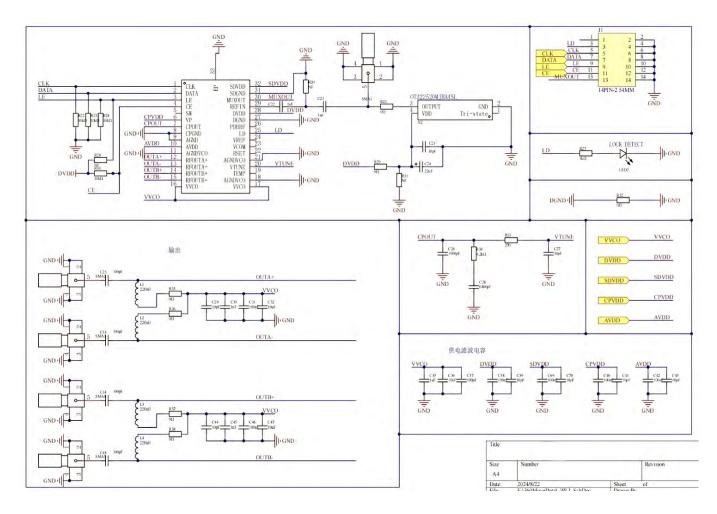

10 MHz鉴相频率下参考杂散 (整数分频) 4200 MHz

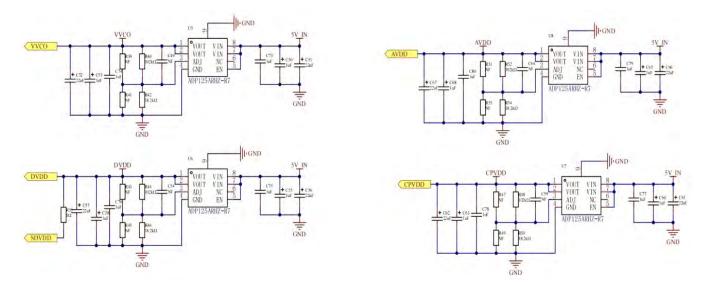

典型工作特性

0.93 mA


1.55 mA

1.24 mA

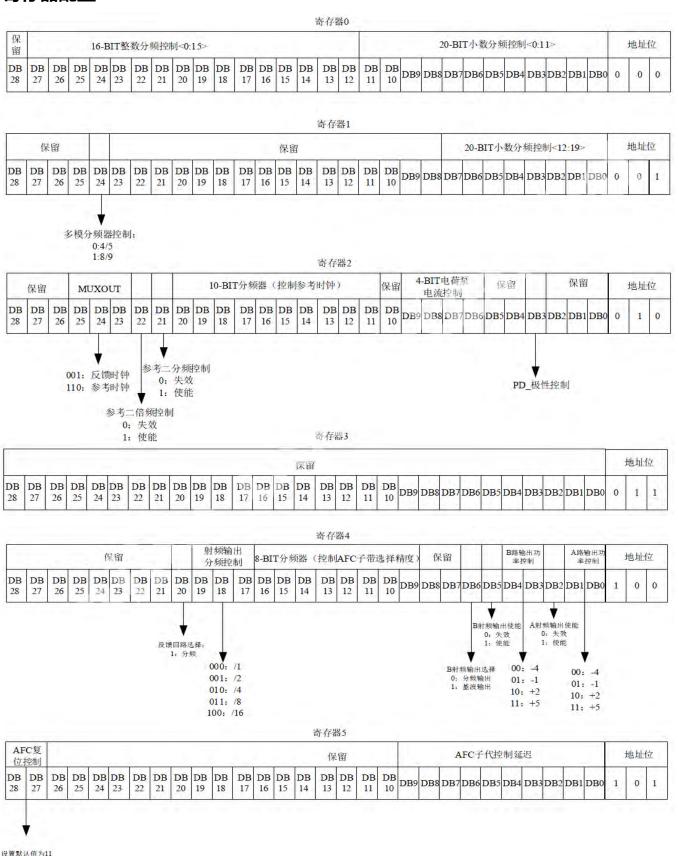

1.86 mA


2.48 mA

服务热线: 028-61399584

参考电路设计

ADIC100LP5原理图



ADIC100LP5供电原理图

整数/小数N分频频率综合器, 125 - 4200 MHz

ADIC100LP5

寄存器配置

ADIC100LP5

寄存器配置

寄存器0

• 控制位

当位[C3:C1]设置为0、0、0时,可对寄存器0进行编程。

• 16位INT值

寄存器0的16位可设置INT值,它决定反馈分频系数的整数部分,用于公式1计算输出频率。对于4/5预分频器,可以设置从16到65,535的所有整数值。对于8/9预分频器,最小整数值为64,对于ADIC100LP5低于4 GHz可以采用8/9预分频器完成全频带锁定。

• 20位FRAC值

寄存器0包含20位FRAC的低12位,用于设置Σ-Δ调制器小数输入的分子。它与INT一起决定频率源输出的频率。在使用FRAC功能时,使用4 MHz或者8 MHz的鉴相时钟。

寄存器1

• 控制位

当位[C3:C1]设置为0、0、1时,可对寄存器1进行编程。

• 预分频器值

双模预分频器 (P/P+1) 与INT、FRAC一起,决定从VCO输出到PFD输入的整体分频比。预分频器工作在CML电平,从VCO输出获得时钟,并针对分频器进行分频。它基于同步4/5内核。

20位FRAC值

寄存器1包含20位FRAC的高8位,用于设置Σ-Δ调制器小数输入的分子。它与INT一起决定频率源输出的频率。在使用FRAC功能时,使用4 MHz或者8 MHz的鉴相时钟。

寄存器2

• 控制位

当位[C3:C1]设置为0、1、0时,可对寄存器2进行编程。

MUXOUT

片内多路复用器由位[DB25:DB23]控制(参见寄存器2)

参考倍频器

当DB22设置为0时,倍频器禁用, REFIN信号直接接入10-bit的R分频器。当此位设置为1时, REFIN频率加倍,然后接入10-bit的R分频器。倍频器禁用时, REFIN下降沿是小数频率合成器的PFD输入端的有效沿。倍频器使能时,REFIN的上升沿和下降沿均是PFD输入端的有效沿。

当使能倍频器,带内相位噪声性能对REFIN占空比敏感。对于45%至55%范围之外的REFIN占空比,相位噪声性能下降可能多达5dB。在最低噪声模式下,并且倍频器禁用时,相位噪声性能对REFIN占空比不敏感。

RDIV2

当DB21设置为1时,R分频器与PFD之间将插入一个二分频触发器,以扩大REFIN最大输入速率。此功能使得PFD输入端信号占空比为50。

• 10位R分频器

利用10位R分频器,可以细分输入基准频率(REFIN)以产生PFD的基准时钟。分频比可以为2至1023。

• 电荷泵电流设置

位[DB9:DB9]用于设置电荷泵的电流。基础电流为 0.31 mA, 最大输出5 mA。

鉴相器极性

DB3设置鉴相器极性。如果使用无源环路滤波器或同相有源环路滤波器,则应将其设置为1。如果使用反相有源滤波器,则应将其设置为0。

ADIC100LP5

寄存器配置

寄存器3

• 控制位

当位[C3:C1]设置为0、1、1时,可对寄存器3进行编程。

寄存器4

• 控制位

当位[C3:C1]设置为1、0、0时,可对寄存器4进行编程。

• 反馈选择

DB20选择从VCO输出到N分频器的反馈。设置为1时,信号直接从VCO经过内部二分频器获得。

• 分频器选择

位[DB19:DB17]选择输出分频器的值(参见寄存器4)。

• 频段选择时钟分频器值

寄存器4的[DB16:DB9]设置频段选择逻辑时钟输入的分频器。R分频器的输出默认用作频段选择逻辑时钟,但如果此值太大(>125 kHz),则可以启用一个分频器,以将R分频器输出细分为较小的值。

• 辅助输出选择

DB6设置辅助RF输出。可以选择RF分频器的输出或VCO基频。

• 辅助输出使能

根据所选择的值,DB5使能或禁用辅助RF输出。

• 辅助输出功率

位[DB4:DB3]设置辅助RF输出功率水平的值。

• RF输出使能

根据所选择的值,DB2使能或禁用主RF输出。

• 输出功率

位[DB1:DB0]设置主RF输出功率水平的值。

寄存器5

• 控制位

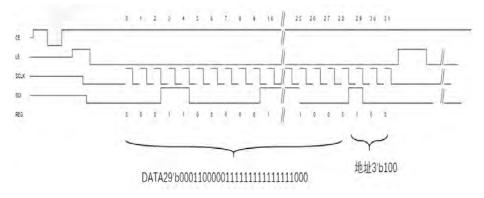
当位[C3:C1]设置为1、0、1时,可对寄存器5进行编程。

• AFC子代控制延迟

位[DB9:DB0]设置子代跳变的间隔时间,当锁定频率低于2.9 GHz,将AFC设置为1000(十进制)。

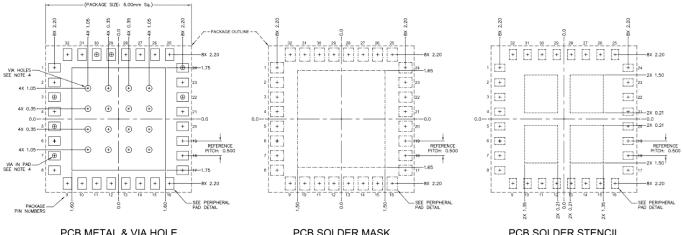
• AFC复位控制

默认设置11


输出频率计算公式1:

RFOUT = 2× (INT×Fpfd+Fpfd/2²⁰×Frac) INT为16bit整数控制; Frac为20bit小数控制; Fpfd为鉴频鉴相时钟

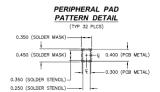
Fpfd=Fref/R×D×1/DIV


Fref为参考时钟, R为寄存器2中的10bit分频器, 最小值为2.D和DIV为寄存器2中参考二倍频和二分频。当D和DIV失效时, Fpfd = Fref/R

时序配置说明

- 1.每组寄存器共计32位,包括 a<2:0>3位地址位,d<28:0>29位 数据位;
- 2.SCLK上升沿,读取DATA数据; 3.每个寄存器写入完毕后,LE拉高 再拉低进行下个寄存器写入;
- 4.CE拉低再拉高, 进入写入操作。

PCB参考设计


PCB METAL & VIA HOLE

PCB SOLDER MASK TOP (X-Ray) VIEW

服务热线: 028-61399584

PCB SOLDER STENCIL TOP (X-Ray) VIEW

更新日期: 2024-12-01

- GENERAL NOTES:

 1. ALL DIMENSIONS ARE IN MILLIMETERS.
 2. DIMENSIONING AND TOLERANCES CONFORM TO ASME Y14.5M-1994.
 (UNLESS OTHERWISE SPECIFIED THE FOLLOWING VALUES APPLY)

 DECIMAL TOLERANCE:
 X.X (1 PLC) ± 0.1mm

 X.XXX (2 PLC) ± 0.05mm

 X.XXX (3 PLC) ± 0.025mm

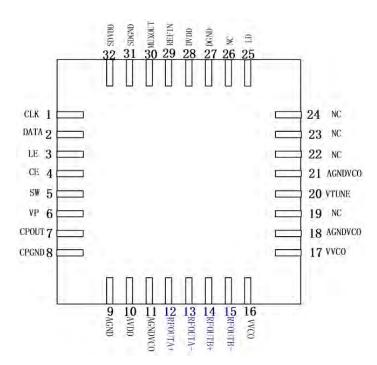
 3. UNLESS SPECIFIED DIMENSIONS ARE SYMMETRICAL ABOUT CENTER LINES.

RECOMMENDED FOOTPRINT NOTES:

- Sb. ALL GROUND PADDLE FEATURES ARE SOLDER MASK DEFINED.

 6. SOLDER STENCIL, APERTURE FEATURES:

 6a. SOLDER STENCIL APERTURE OPENINGS ARE SMALLER THEN PERIPHERAL PCB METAL PADS.


 6b. RECOMMENDED SOLDER STENCIL APERTURE ARRAY TO TARGET APPROXIMATELY

 50 80% COVERAGE OF SOLDER MASK OPENINGS, EXCEPT AS NOTED.

 7. RECOMMENDED SOLDER STENCIL THICKNESS: 5. Somils (C.127mm).

 8. PCB ACAD AND GERBER FILES AVAILABLE UPON REQUEST.

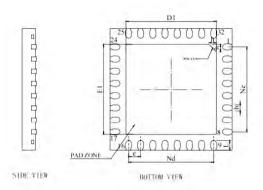
引脚定义

整数/小数N分频频率综合器, 125 - 4200 MHz

ADIC100LP5 V0

引脚功能描述

引脚编号	符号	功能描述
1	CLK	串行时钟输入。数据在CLK上升沿时逐个输入32位移位寄存器。此输入为高阻抗 CMOS输入。
2	DATA	串行数据输入。串行数据以MSB优先方式加载,三个LSB用作控制位。此输入为高阻抗CMOS输入。
3	LE	加载使能,CMOS输入。当LE变为高电平时,存储在移位寄存器中的数据载入三个LSB 所选择的寄存器。
4	CE	芯片使能。此引脚的逻辑低电平将关断器件,并使电荷泵进入三态模式。根据关断位的状态不同,此引脚逻辑高电平将使器件上电。
5	SW	快速锁定开关。使用快速锁定模式时,必须将环路滤波器与此引脚相连。
6	VP	电荷泵电源。此引脚须等于AVDD。至地层的去耦电容应尽可能靠近此引脚。
7	CPOUT	电荷泵输出。使能时,此引脚向外部环路滤波器提供±ICP。环路滤波器的输出连到 VTUNE,以驱动内部VCO。
8	CPGND	电荷泵接地。这是CPOUT的接地回路引脚。
9	AGND	模拟地。
10	AVDD	模拟电源。范围为3.0 V至3.6 V。至模拟地层的去耦电容应尽可能靠近此引脚。
11	AGNDVCO	VCO模拟地。这些是VCO的接地回路引脚。
12	RFOUTA+	VCO输出。输出电平可编程。提供VCO基波输出或分频输出。
13	RFOUTA-	互补VCO输出。输出电平可编程。提供VCO基波输出或分频输出。
14	RFOUTB+	辅助VCO输出。输出电平可编程。提供VCO基波输出或分频输出。
15	RFOUTB-	互补辅助VCO输出。输出电平可编程。提供VCO基波输出或分频输出。
16	VVCO	VCO电源。范围为3.0 V至3.6 V。至模拟地层的去耦电容应尽可能靠近这些引脚。
17	VVCO	VCO电源。范围为3.0 V至3.6 V。至模拟地层的去耦电容应尽可能靠近这些引脚。
18	AGNDVCO	VCO模拟地。这些是VCO的接地回路引脚。
19、22、23、24、26	N/C	
20	VTUNE	VCO的控制输入。此电压决定输出频率,从对CPOUT输出电压的滤波而获得。
21	AGNDVCO	VCO模拟地。这些是VCO的接地回路引脚。
25	LD	锁定检测输出引脚。此引脚输出逻辑高电平时表示PLL锁定。逻辑低电平输出表示PLL失锁。
27	DGND	数字地。
28	DVDD	数字电源。范围为3.0 V至3.6 V。
29	REFIN	基准输入。这是一个CMOS输入,标称阈值为V _{DD} /2,并具有100 kΩ的直流等效输入电阻。此输入可以采用TTL或CMOS品振驱动,或者交流耦合。
30	MUXOUT	多路复用器输出。此多路复用器输出允许从外部访问锁定检测、经过缩放的RF或基准频率。
31	SDGND	数字Σ-Δ调制器接地。
32	SDVDD	数字Σ-Δ调制器的电源引脚。范围为3.0 V至3.6 V。


服务热线: 028-61399584

整数/小数N分频频率综合器, 125 - 4200 MHz

ADIC100LP5 Vo

外形尺寸

服务热线: 028-61399584

SYMBOL	ALITHMALEN					
	MY	NOIL	9.58			
٨	0.70	0.75	0/80			
- NI		0.02	0.05			
eb	01,20	0.25	0.30			
41	0.203RE)					
Ď	1,90	5: 00	etc 10			
194	8, 60	3.78	3.80			
- é	0, 50RSc					
he	3 50BSC					
- Sd.	8, 50RSC					
6	4. 90	5.00	ā; 10			
FI	3, 60	3.70	3,80			
11	0.35	0.40	0.46			
h.	0.25	9, 30.	0.35			